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Nine classes of integrable boundary conditions for the
eight-state supersymmetric fermion model
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Department of Mathematics,University of Queensland, Brisbane, Qld 4072, Australia

Received 17 March 1998, in final form 29 May 1998

Abstract. Nine classes of integrable boundary conditions for the eight-state supersymmetric
model of strongly correlated fermions are presented. The boundary systems are solved by using
the coordinate Bethe ansatz method and the Bethe ansatz equations for all nine cases are given.

1. Introduction

Lattice integrable models with open boundary conditions are one of the recent developments
which deserve careful elaboration. As many systems in nature are confined in finite boxes
(or intervals for one-dimensional systems), the effects of boundaries are very significant.
This is particularly so for integrable systems, since boundary conditions generally spoil the
integrability of the bulk models. Therefore, the problem of how to extend a bulk integrable
model to include integrable boundary conditions becomes very important.

A systematic method for treating integrable lattice models with boundaries, the boundary
quantum inverse scattering method (QISM), was developed by Sklyanin [1] and generalized
in [2, 3]. Within this framework, the integrable boundary conditions are determined by
boundaryK-matrices obeying the (graded) reflection equations.

Integrable correlated fermion systems constitute an important class of lattice integrable
models, which have recently attracted much attention [4–8]. In [8], we proposed two new
integrable models with Lie superalgebragl(3|1) and quantum superalgebraUq [gl(3|1)]
symmetries, respectively. These are eight-state fermion models with correlated single-
particle and pair hoppings, uncorrelated triple-particle hopping and two- and three-particle
on-site interactions. By eight-state, we mean that at a given lattice sitej of lengthL there
are eight possible states:

|0〉 c
†
j,+|0〉 c

†
j,0|0〉 c

†
j,−|0〉

c
†
j,+c

†
j,0|0〉 c

†
j,+c

†
j,−|0〉 c

†
j,0c

†
j,−|0〉 c

†
j,+c

†
j,0c

†
j,−|0〉

(1.1)

where c†j,α (cj,α) denotes a fermionic creation (annihilation) operator which creates
(annihilates) a fermion of speciesα = +, 0, − at site j ; these operators satisfy the
anti-commutation relations given by{c†i,α, cj,β} = δij δαβ .

In a series of papers, we constructed a large number of integrable boundary conditions
for various models of strongly correlated electrons [9, 10, 3]. In this paper, we are concerned
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with the integrable eight-state fermion model with Lie superalgebragl(3|1) symmetry. We
present nine classes of boundary conditions for this model, all of which are shown to be
integrable by the graded boundary QISM recently formulated in [3]. We solve the boundary
systems by using the coordinate Bethe ansatz method and derive the Bethe ansatz equations
for all nine cases.

This paper is organized as follows. In section 2 the boundary model Hamiltonians are
described. In the subsequent sections we establish the quantum integrability for all these
boundary conditions,and derive the corresponding Bethe ansatz equations in terms of the
coordinate Bethe ansatz method. The last section is devoted to conclusions.

2. Boundary model Hamiltonians

We consider the following Hamiltonian with boundary terms:

H =
L−1∑
j=1

H bulk
j,j+1+H boundary

lt +H boundary
rt (2.1)

whereH boundary
lt , H

boundary
rt are respectively left and right boundary terms whose explicit

forms are given below, andH bulk
j,j+1 is the Hamiltonian density of the eight-state

supersymmetricU model [8]:

H bulk
j,j+1(g) = −

∑
α

(
c
†
j,αcj+1,α + HC

)
exp

{
−η

2

∑
β( 6=α)

(nj,β + nj+1,β)

+ζ
2

∑
β 6=γ (6=α)

(nj,βnj,γ + nj+1,βnj+1,γ )

}

− 1

2(g + 1)

∑
α 6=β 6=γ

(
c
†
j,αc

†
j,βcj+1,βcj+1,α + HC

)
exp

{
−ξ

2
(nj,γ + nj+1,γ )

}

− 2

(g + 1)(g + 2)

(
c
†
j,+c

†
j,0c

†
j,−cj+1,−cj+1,0cj+1,+ + HC

)
+
∑
α

(nj,α + nj+1,α)− 1

2(g + 1)

∑
α 6=β

(nj,αnj,β + nj+1,αnj+1,β)

+ 2

(g + 1)(g + 2)
(nj,+nj,0nj,− + nj+1,+nj+1,0nj+1,−) (2.2)

wherenjα is the number density operatornjα = c†jαcjα, nj = nj+ + nj0+ nj−, and

η = − ln
g

g + 1
ζ = ln(g + 1)− 1

2
ln g(g + 2) ξ = − ln

g

g + 2
. (2.3)

We claim that the boundary Hamiltonain (2.1) is integrable under the following boundary
conditions.

Case (i):

H
boundary
lt = − 2g

2− ξ I−

(
n1− 2

ξ I−
(n1+n10+ n10n1− + n1+n1−)+ 8

ξ I−(2+ ξ I−)
n1+n10n1−

)
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H
boundary
rt = − 2g

2− ξ I+

(
nL − 2

ξ I+
(nL+nL0+ nL0nL− + nL+nL−)+ 8

ξ I+(2+ ξ I+)
nL+nL0nL−

)
(2.4)

Case (ii): H
boundary
lt = 2g

ξ II−

(
n10+ n1− − 2

2− ξ II−
n10n1−

)
H

boundary
rt = 2g

ξ II+

(
nL0+ nL− − 2

2− ξ II+
nL0nL−

) (2.5)

Case (iii): H
boundary
lt = 2g

ξ III−
n1− H

boundary
rt = 2g

ξ III+
nL− (2.6)

plus six others, numbered from case (iv) to case (ix) below, which are built from the above
three cases by using the fact that boundary conditions on the left and right ends of an open
lattice chain can be chosen independently. Throughout, theξa± (a = I, II , III ) are some
parameters describing the boundary effects.

3. Quantum integrability

Quantum integrability of the boundary conditions proposed in section 2 can be established by
means of the (graded) boundary QISM recently formulated in [3]. Indeed, the integrability
corresponding to the above case (i) has been shown in [10]. We now establish integrability
for the remaining eight cases. We first search for boundaryK-matrices which satisfy the
graded reflection equations

R12(u1− u2)
1
K−(u1)R21(u1+ u2)

2
K−(u2)

= 2
K−(u2)R12(u1+ u2)

1
K−(u1)R21(u1− u2) (3.1)

R
st1ist2
21 (−u1+ u2)

1
K
st1+ (u1)R12(−u1− u2+ 4)

2
K
ist2+ (u2)

= 2
K
ist2+ (u2)R21(−u1− u2+ 4)

1
K
st1+ (u1)R

st1 ist2
12 (−u1+ u2) (3.2)

whereR(u) ∈ End(V ⊗ V ), with V the eight-dimensional representation ofgl(3|1), is
theR-matrix of the eight-state supersymmetricU model [8], andR21(u) = P12R12(u)P12

with P being the graded permutation operator; the supertranspositionstµ (µ = 1, 2) is only
carried out in theµth factor superspace ofV ⊗V , while istµ denotes the inverse operation
of stµ.

It can be checked that there are three different diagonal boundaryK-matrices†,
K I
−(u), K

II
−(u), K

III
− (u), which solve the first reflection equation (3.1):

K I
−(u) =

1

ξ I−(2− ξ I−)(2+ ξ I−)

× diag
(
AI
−(u), B

I
−(u), B

I
−(u), B

I
−(u), C

I
−(u), C

I
−(u), C

I
−(u),D

I
−(u)

)
K II
−(u) =

1

ξ II−(2− ξ II−)

× diag
(
AII
−(u), A

II
−(u), B

II
−(u), B

II
−(u), B

II
−(u), B

II
−(u), C

II
−(u), C

II
−(u)

)
† Non-diagonalK-matrices exist, but they are beyond the scope of this paper.
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K III
− (u) =

1

ξ III−
diag

(
AIII
− (u), A

III
− (u), A

III
− (u), B

III
− (u), A

III
− (u), B

III
− (u), B

III
− (u), B

III
− (u)

)
(3.3)

where
AI
−(u) = (−ξ I

− + u)(2− ξ I
− + u)(−2− ξ I

− + u)
B I
−(u) = (−ξ I

− + u)(2− ξ I
− − u)(−2− ξ I

− + u)
C I
−(u) = (−ξ I

− − u)(2− ξ I
− − u)(−2− ξ I

− + u)
DI
−(u) = (−ξ I

− − u)(2− ξ I
− − u)(−2− ξ I

− − u)
AII
−(u) = (ξ II

− + u)(2− ξ II
− − u)

B II
−(u) = (ξ II

− − u)(2− ξ II
− − u)

C II
−(u) = (ξ II

− − u)(2− ξ II
− + u)

AIII
− (u) = (ξ III

− + u) B III
− (u) = (ξ III

− − u).

(3.4)

The correspondingK-matrices, K I
+(u), K II

+(u), K III
+ (u), can be obtained from the

isomorphism of the two reflection equations. Indeed, given a solutionKa
−(u) of (3.1),

thenKa
+(u) defined by

Ka
+
st
(u) = Ka

−(−u+ 2) a = I, II , III (3.5)

are solutions of (3.2). The proof follows from some algebraic computations upon substituting
(3.5) in (3.2) and making use of the properties of theR-matrix.

Following Sklyanin’s arguments [1], one may show that the quantityT−(u) given by

T−(u) = T (u)K−(u)T −1(−u) T (u) = R0L(u) · · ·R01(u) (3.6)

satisfies the same relation asK−(u):

R12(u1− u2)
1
T−(u1)R21(u1+ u2)

2
T−(u2) =

2
T−(u2)R12(u1+ u2)

1
T−(u1)R21(u1− u2).

(3.7)

Thus if one defines the boundary transfer matrixτ(u) as

τ(u) = str(K+(u)T−(u)) = str
(
K+(u)T (u)K−(u)T −1(−u)) (3.8)

then it can be shown [3] that [τ(u1), τ (u2)] = 0. Since K±(u) can be taken as
K I
±(u), K

II
±(u) andK III

± (u), respectively, we have nine possible choices of boundary transfer
matrices:

τ (a,b)(u) = str (Ka
+(u)T (u)K

b
−(u)T

−1(−u)) a = I, II , III (3.9)

which reflects the fact that the boundary conditions on the left and right ends of the open
lattice chain are independent.

Now it can be shown that Hamiltonians corresponding to all nine boundary conditions
are related to the second derivative of the boundary transfer matrixτ (a,b)(u) (up to an
unimportant additive constant)

H = 2g H(a,b)

H (a,b) = τ (a,b)
′′
(0)

4(V + 2W)
=

L−1∑
j=1

HR
j,j+1+

1

2

1
K
b′
−(0)+

1

2(V + 2W)

[
str0

( 0
K
a
+(0)GL0

)
(3.10)

+ 2str0
( 0
K
a′
+(0)H

R
L0

)+ str0( 0
K
a
+(0)(H

R
L0)

2
)]
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where

V = str0Ka′
+ (0) W = str0

( 0
K
a
+(0)H

R
L0

)
HR
j,j+1 = Pj,j+1R

′
j,j+1(0) Gj,j+1 = Pj,j+1R

′′
j,j+1(0)

(3.11)

with Pj,j+1 denoting the graded permutation operator acting on thej th and(j+1)th quantum
spaces. More precisely, cases (i), (ii) and (iii) correspond toH(I , I), H(II , II) andH(III , III ),
respectively. We arrange the remaining six cases in the following order so that we have
the correspondence: case (iv)↔ H(I , II), case (v)↔ H(II , I), case (vi)↔ H(I , III ), case (vii)
↔ H(III , I), case (viii)↔ H(II , III ) and case (ix)↔ H(III , II).

Let us also remark that for general boundary parametersξa± the boundary terms listed
above break the originalgl(3|1) symmetry of the bulk model intoU(1) × U(1) × U(1)
symmetry (generated by fermion number operators).

4. Bethe ansatz solutions

Having established the quantum integrability of the boundary model, we now solve it by
using the coordinate space Bethe ansatz method. Following [11, 9, 3, 10], we assume that
the eigenfunction of Hamiltonian (2.2) takes the form

|9〉 =
∑
{(xj ,αj )}

9α1,...,αN (x1, . . . , xN)c
†
x1α1
· · · c†xNαN |0〉

9α1,...,αN (x1, . . . , xN) =
∑
P

εPAαQ1,...,αQN (kPQ1, . . . , kPQN) exp

(
i
N∑
j=1

kPj xj

) (4.1)

where the summation is taken over all permutations and negations ofk1, . . . , kN , andQ is
the permutation of theN particles such that 16 xQ1 6 · · · 6 xQN 6 L. The symbolεP is
a sign factor±1 and changes its sign under each ‘mutation’. Substituting the wavefunction
into the eigenvalue equationH |9〉 = E|9〉, one obtains

A...,αj ,αi ,...(. . . , kj , ki, . . .) = Sij (ki, kj )A...,αi ,αj ,...(. . . , ki, kj , . . .)
Aαi,...(−kj , . . .) = sL(kj ;p1αi )Aαi,...(kj , . . .)

A...,αi (. . . ,−kj ) = sR(kj ;pLαi )A...,αi (. . . , kj )
(4.2)

whereSij (ki, kj ) are the two-particle scattering matrices

Sij (ki, kj ) = θ(ki)− θ(kj )+ icPij
θ(ki)− θ(kj )+ ic

(4.3)

wherePij denotes the operator interchanging the species variablesαi and αj , (αi, αj =
+, 0,−), the rapidities θ(kj ) are related to the single-particle quasi-momentakj by
θ(k) = 1

2 tan( 1
2k) and the dependence on the system parameterg is incorporated in the

parameterc = 1/g. sL(kj ;p1αi ) andsR(kj ;pLαi ) are the boundary scattering matrices

sL(kj ;p1αi ) =
1− p1αie

ikj

1− p1αie
−ikj

sR(kj ;pLαi ) =
1− pLαie−ikj

1− pLαieikj
e2ikj (L+1)

(4.4)
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wherep1αi and pLαi are given by the following formulae, corresponding to (2.4)–(2.6),
respectively:

Case (i): p1+ = p10 = p1− ≡ p1 = −1− 2g

2− ξ I−

pL+ = pL0 = pL− ≡ pL = −1− 2g

2− ξ I+

(4.5)

Case (ii): p1+ = −1 p10 = p1− = −1+ 2g

ξ II−

pL+ = −1 pL0 = pL− = −1+ 2g

ξ II+

(4.6)

Case (iii): p1+ = p10 = −1 p1− = −1+ 2g

ξ III−

pL+ = pL0 = −1 pL− = −1+ 2g

ξ III+
.

(4.7)

As can be seen above, the two-particleS-matrix (4.3) is simply theR-matrix of the
gl(3)-invariant Heisenberg isotropic magnetic chain and thus satisfies the quantum Yang–
Baxter equation (QYBE)

Sij (ki, kj )Sil(ki, kl)Sjl(kj , kl) = Sjl(kj , kl)Sil(ki, kl)Sij (ki, kj ). (4.8)

It can be checked that the boundary scattering matricessL and sR obey the reflection
equations:

Sji(−kj ,−ki)sL(kj ;p1αj )Sij (−ki, kj )sL(ki;p1αi )

= sL(ki;p1αi )Sji(−kj , ki)sL(kj ;p1αi )Sij (ki, kj )

Sji(−kj ,−ki)sR(kj ;pLαj )Sij (ki,−kj )sR(ki;pLαi )
= sR(ki;pLαi )Sji(kj ,−ki)sR(kj ;pLαi );pαi )Sji(kj , ki).

(4.9)

This is seen as follows. One introduces the notation

s(k;p) = 1− pe−ik

1− peik
. (4.10)

Then the boundary scattering matricessL(kj ;p1αi ), s
R(kj ;pLαi ), corresponding to (4.5)–

(4.7), can respectively be written as

Case (i): sL(kj ;p1αi ) = s(−kj ;p1)I

sR(kj ;pLαi ) = eikj2(L+1)s(kj ;pL)I
(4.11)

Case (ii): sL(kj ;p1αi ) = s(−kj ;p1+)


1 0 0

0
ζ− + λj
ζ− − λj 0

0 0
ζ− + λj
ζ− − λj



sR(kj ;pLαi ) = eikj2(L+1)s(kj ;pL+)


1 0 0

0
ζ+ − λj
ζ+ + λj 0

0 0
ζ+ − λj
ζ+ + λj


(4.12)
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Case (iii): sL(kj ;p1αi ) = s(−kj ;p1+)


1 0 0

0 1 0

0 0
κ− + λj
κ− − λj



sR(kj ;pLαi ) = eikj2(L+1)s(kj ;pL+)


1 0 0

0 1 0

0 0
κ+ − λj
κ+ + λj


(4.13)

whereI stands for the 3×3 identity matrix andp1+, pL+ are those given in (4.6);ζ±, κ±
are parameters defined by

ζ± =
i(g − ξ II

±)
2g

κ± =
i(g − ξ III

± )
2g

. (4.14)

The boundary scattering matrices for cases (iv)–(ix) can easily be built from (4.11), (4.12)
and (4.13). We immediately see that (4.11) are the trivial solutions of the reflection equations
(4.9), whereas equations (4.12) and (4.13) are the diagonal solutions [1, 2].

The diagonalization of Hamiltonian (2.2) reduces to solving the following matrix
eigenvalue equation:

Tj t = t j = 1, . . . , N (4.15)

wheret denotes an eigenvector on the space of the spin variables andTj takes the form

Tj = S−j (kj )sL(−kj ;p1σj )R
−
j (kj )R

+
j (kj )s

R(kj ;pLσj )S+j (kj ) (4.16)

with

S+j (kj ) = Sj,N (kj , kN) · · · Sj,j+1(kj , kj+1)

S−j (kj ) = Sj,j−1(kj , kj−1) · · · Sj,1(kj , k1)

R−j (kj ) = S1,j (k1,−kj ) · · · Sj−1,j (kj−1,−kj )
R+j (kj ) = Sj+1,j (kj+1,−kj ) · · · SN,j (kN ,−kj ).

(4.17)

This problem can be solved using the algebraic Bethe ansatz method. The Bethe ansatz
equations are

eikj2(L+1)F (kj ;p1+, pL+) =
M1∏
σ=1

θj − λ(1)σ + ic/2

θj − λ(1)σ − ic/2

θj + λ(1)σ + ic/2

θj + λ(1)σ − ic/2

N∏
j=1

λ(1)σ − θj + ic/2

λ
(1)
σ − θj − ic/2

λ(1)σ + θj + ic/2

λ
(1)
σ + θj − ic/2

= G(λ(1)σ ; ζ−, ζ+)
M1∏
ρ=1
ρ 6=σ

λ(1)σ − λ(1)ρ + ic

λ
(1)
σ − λ(1)ρ − ic

λ(1)σ + λ(1)ρ + ic

λ
(1)
σ + λ(1)ρ − ic

×
M2∏
ρ=1

λ(1)σ − λ(2)ρ − ic/2

λ
(1)
σ − λ(2)ρ + ic/2

λ(1)σ + λ(2)ρ − ic/2

λ
(1)
σ + λ(2)ρ + ic/2

σ = 1, . . . ,M1

M1∏
ρ=1

λ(2)γ − λ(1)ρ + ic/2

λ
(2)
γ − λ(1)ρ − ic/2

λ(2)γ + λ(1)ρ + ic/2

λ
(2)
γ + λ(1)ρ − ic/2

=



7058 Y-Z Zhang and H-Q Zhou

= K(λ(2)γ ; κ−, κ+)
M2∏
ρ=1
ρ 6=γ

λ(2)γ − λ(2)ρ + ic

λ
(2)
γ − λ(2)ρ − ic

λ(2)γ + λ(2)ρ + ic

λ
(2)
γ + λ(2)ρ − ic

γ = 1, . . . ,M2

(4.18)

where

F(kj ;p1+, pL+) = s(kj ;p1+)s(kj ;pL+) for all cases

G(λ(1)σ ; ζ−, ζ+) =



1 case (i)

(ζ− + λ(1)σ + ic/2)

(ζ− − λ(1)σ + ic/2)

(ζ+ + λ(1)σ + ic/2)

(ζ+ − λ(1)σ + ic/2)
case (ii)

1 case (iii)

(ζ+ + λ(1)σ + ic/2)

(ζ+ − λ(1)σ + ic/2)
case (iv)

(ζ− + λ(1)σ + ic/2)

(ζ− − λ(1)σ + ic/2)
case (v)

1 case (vi)

1 case (vii)

(ζ− + λ(1)σ + ic/2)

(ζ− − λ(1)σ + ic/2)
case (viii)

(ζ+ + λ(1)σ + ic/2)

(ζ+ − λ(1)σ + ic/2)
case (ix)

K(λ(2)γ ; κ−, κ+) =



1 case (i)

1 case (ii)

(κ− + λ(2)γ + ic)

(κ− − λ(2)γ + ic)

(κ+ + λ(2)γ + ic)

(κ+ − λ(2)γ + ic)
case (iii)

1 case (iv)

1 case (v)

(κ+ + λ(2)γ + ic)

(κ+ − λ(2)γ + ic)
case (vi)

(κ− + λ(2)γ + ic)

(κ− − λ(2)γ + ic)
case (vii)

(κ+ + λ(2)γ + ic)

(κ+ − λ(2)γ + ic)
case (viii)

(κ− + λ(2)γ + ic)

(κ− − λ(2)γ + ic)
case (ix) .

(4.19)
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The energy eigenvalueE of the model is given byE = −2
∑N
j=1 coskj (modulo an

unimportant additive constant coming from the chemical potential term).

5. Conclusion

In conclusion, we have studied integrable open boundary conditions for the eight-state
supersymmetricU model. The quantum integrability of the system follows from the fact
that the Hamiltonian may be embedded in a one-parameter family of commuting transfer
matrices. Moreover, the Bethe ansatz equations are derived by use of the coordinate-
space Bethe ansatz approach. This provides us with a basis for computing the finite-size
corrections (see, e.g., [11]) to the low-lying energies in the system, which in turn allow us
to use the boundary conformal field theory technique to study the critical properties of the
boundary. The details will be treated in a separate publication.
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